Perinatal Webinar: HIE
(Hypoxic Ischemic Encephalopathy)

Cathy White, RNC NNP-BC
Neonatal Outreach Educator
Perinatal Systems, Midlands Region

Disclosure:

“Please note that this Power Point presentation is an educational tool that is general in nature. It is not intended to be an exhaustive review of the subject matter or the opinion of Palmetto Health. Materials presented in this presentation should not be considered a substitute for actual statutory or regulatory language. Always refer to your legal counsel and the current edition of a referenced statute, code and/or regulation for precise language.”
Objectives

• The participant will be able to
 – recognize the criteria used when diagnosing an infant with hypoxic ischemic encephalopathy
 – recognize clinical grading system used for diagnosing the severity of hypoxic ischemic encephalopathy
 – have an increased understanding of management and treatment of the infant with hypoxic ischemic encephalopathy with therapeutic neuroprotective hypothermia

Definitions

• Birth Injury
 – Fetal or neonatal injury has occurred during the process of birth. Occurs during the first and second stages of labor
 – Examples of injury
 • Brachial plexus injury
 • Fracture clavicle
 • Damage to facial nerve

• Birth Asphyxia
 – Occurs during the first and second stages of labor when the fetus was otherwise normal

• Perinatal Asphyxia
 – Asphyxia occurred at any time in the perinatal period. From conception through the first month of life
Proper Terminology

• Hypoxic-Ischemic Encephalopathy
 – Term recommend by the AAP and ACOG
 – Term accurately describes the clinical condition
 – Encephalopathy from asphyxia
 • Does not imply the time of brain injury
 – Characterized by clinical and laboratory evidence of acute or subacute brain injury from asphyxia

Incidence of HIE

• Major cause of death and disabilities
• Occurs 1-3/1000 births
• Mortality rates 10-60%
• Morbidity 25%
• 15-28% incidence of cerebral palsy
Pathophysiology

Perinatal Event - Causing hypoxia ischemia

Impaired cerebral blood flow

Impaired blood flow initiates a cascade of harmful biochemical events

Depletion of oxygen leads to anaerobic metabolism

Accumulation of lactic acid and the inability to maintain cellular functions

Cellular failure leads to intracellular accumulation of Na+, Ca+ and water leading to a toxic effect on cells

Cellular death

Pathophysiology: 2 Phases

Therapeutic Window: Hypothermia Other

Primary energy failure (Minutes):
- Na+ overload
- Excitotoxicity

Reperfusion

Cerebral metabolism transiently recovers

Secondary phase (Hours to days):
- Between 6-72 h after insult
- Mitochondrial dysfunction
- Caspases activation

Hypoxic ischemic brain injury

Interventions NEED TO BE WITHIN 6 hrs of insult
Acute Perinatal Events

• Impaired Placental and Fetal Perfusion

• Causes
 – Placental abruption
 – Uterine rupture
 – Prolapsed or ruptured cord
 – Maternal collapse requiring CPR

Hypoxic Ischemic Encephalopathy

Perinatal event disrupts brain perfusion

Striate vessels underperfused

Diffuse white matter injury
Criteria For Neonatal Therapeutic Hypothermia

• Candidates For Whole Body Cooling
 – Gestational age ≥36 weeks
 – ≤6 hours of age
 – pH ≤7.00 or base deficit ≥16 mmol/L in an umbilical cord blood sample
 or any blood sample obtained within the first hour after birth
 – Moderate or severe encephalopathy on clinical examination
 – Acute Perinatal event
 – Assisted ventilation at birth and continued for 10 minutes
 – APGAR score ≤5 at 10 minutes after birth

Clinical Staging of HIE – Sarnat Grading Scale of HIE (Sarnat and Sarnat, 1976)

Mild HIE- Sarnat Stage I
• Hyper-alert
• Eyes wide open
• Does not sleep
• Irritable
• No seizures
• Usually lasts <24 hours

Moderate HIE-Sarnat Stage II
• Lethargy
• Reduced tone of the extremities and/or trunk
• Diminished pupil, gag and suck reflex
• Possible clinical seizures
Severe HIE-Sarnat Stage III

- Coma (cannot be roused)
- Weak or absent respiratory drive
- No response to stimuli
- Flaccid tone
- Diminished or absent pupil, gag and suck reflex
- Diminished tendon reflexes
- EEG severely abnormal (suppressed or flat with or without seizures)

http://cpcare.org/hie/sarnat-grading-scale-of-hie/
Scoring Chart – Neuro Exam from PHR

<table>
<thead>
<tr>
<th>Domain</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common facial or multiple areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon (excluding denervation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Or frequent areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of consciousness</td>
<td>Normal</td>
<td>Lethargic</td>
<td>Drowsy / Comatose</td>
</tr>
<tr>
<td>Spontaneous activity when awake or aroused</td>
<td>Active</td>
<td>Less than active, not apneic</td>
<td>No activity whatsoever</td>
</tr>
<tr>
<td>Posture</td>
<td>Moving around and does not maintain any one position</td>
<td>Dystonia, opisthotonic, or “frog-legged” position</td>
<td>Dystonia with or without stimulation (all extremities extended)</td>
</tr>
<tr>
<td>Tone</td>
<td>Normal – resists passive manipulation, hypertonicity, jittery</td>
<td>Hypotonic or flaccid, either flaccid or general</td>
<td>Completely flaccid, like a rag doll</td>
</tr>
<tr>
<td>Prerequisite reflexes</td>
<td>Jack:</td>
<td>Suck:</td>
<td>Jack:</td>
</tr>
<tr>
<td>Abnormal</td>
<td>Abnormal or apneic</td>
<td>Abnormal or apneic</td>
<td>Abnormal or apneic</td>
</tr>
<tr>
<td>Apnea:</td>
<td>Normal size (<1 mm diameter)</td>
<td>Centralized (<3 mm estimated), but RESC 10</td>
<td>Apnea:</td>
</tr>
<tr>
<td>Abnormal rate</td>
<td>Normal, > 100 bpm</td>
<td>Variable up to 120 bpm</td>
<td>Apnea:</td>
</tr>
<tr>
<td>Respirations</td>
<td>Regular spontaneous breathing</td>
<td>Regular spontaneous breathing</td>
<td>Variable, inconstant rate, irregular breathing effort</td>
</tr>
</tbody>
</table>

Systemic Complications of HIE

- **Acute renal failure**
- **Myocardial dysfunction and hypotension**
- **Elevated LFT’s**
- **Coagulation impairment**
- **SUPPORTIVE CARE REQUIRED!**
Assessment Tools in HIE

- Electroencephalogram (EEG)
 - Neonatal seizures
 - Presence and severity of encephalopathy

- Amplitude integrated EEG (aEEG)
 - Useful to distinguish mild from severe neonatal encephalopathy
 - Marginal abnormal or normal aEEG reassuring for good outcome
 - Severely abnormal aEEG raises probability of death or severe disability from 25% to 75%

Assessment Tools in HIE

• Neuroimaging
 – Cranial ultrasound
 • Not a sensitive tool to identify milder white matter abnormalities
 – CT Scan
 • Milder degrees of edema and white matter injury can be difficult to detect
 – MRI Scan
 • Most appropriate scan
 • Most sensitive for detecting cortical and white matter injury, deep gray matter lesions, arterial infarction and developmental brain malformations

Laboratory Test

• Serum Electrolytes
 – Daily assessments
 – Syndrome of inappropriate antidiuretic hormone secretion (SIADH)
 • Low sodium, potassium and chloride levels
 • Decreased urine output
 • Weight gain
 – Renal function Test
 • Creatinine levels
 • BUN
 – Cardiac and liver enzymes
 • Assess degree of hypoxic ischemic injury
 – Coagulation Studies
 • PT, PTT and Fibrinogen
 – ABG
 • Acid base status
Therapeutic Neuroprotective Hypothermia

Mechanism of Action of Hypothermia Therapy

- Hypothermia helps prevent disruptions to cerebral metabolism
- Hypothermia decreases the cerebral metabolic rate for glucose and oxygen
- Hypothermia decreases the loss of high energy phosphates

https://en.wikipedia.org/wiki/Hypothermia_therapy_for_neonatal_encephalopathy
Mechanism of Action of Hypothermia Therapy

• Effects at a cellular level
 – Reduces vasogenic edema
 – Haemorrhage and neutrophil infiltration after trauma
 – Limits intracellular calcium accumulation
 – Free radical production is lessened
 – Reduces activation of the coagulation cascade

• Secondary Cerebral Energy Failure
 – Hypothermia reduces delayed cerebral lactic alkalosis
 – Hypothermia prevents increase in cytotoxic edema and loss of cerebral cortical activity

https://en.wikipedia.org/wiki/Hypothermia_therapy_for_neonatal_encephalopathy

Cooling Process

• Whole body cooling using blanket and servo controlled cooling system
 – The aim is to cool infants with moderate to severe HIE within 6 hours of life
 – Goal esophageal temp: 33.5°C (92.3°F)
 – Continued for 72 hours
 – Supportive care as indicated
 • NPO
 • Respiratory Support
 • Circulatory Support
 • Anticonvulsants
 • Antibiotics

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743149/
Cooling Process

• Nursing interventions
 – Recommended staffing: 1 - 1 nursing care
 – Insert esophageal temp probe 2cm above diaphragm
 – Place infant on pre-cooled blanket and attach esophageal temp probe to blanket
 – Turn all external heat source off
 – Vital signs q hour for 12 hours then q 2hours
 – Blood gases
 – Lab work

Expected Effects of Cooling

• The infants will feel cool
 – Cool to touch and shivering
 – Skin temp 2 degrees lower than core temp
• Lower Heart Rates
 – 90-110/min
• Lower cardiac outputs
 – Adequate for metabolic needs
Rewarming

- Initiated after 72 hours of cooling
- Slow rewarming
 - 0.5°C per hour until desired temp of 36.5°C (97.7°F)
 - Approximately over 4-6 hours
 - Cooling device discontinued
 - Temperature control using servo mode on radiant warmer

Role of Referring Hospital In Optimizing The Outcome

- Early identification of possible candidates
 - History of adverse perinatal event
 - Laboratory evidence of acidosis
 - Signs of encephalopathy on examination
Optimizing Care

- Early consultation with the Regional Perinatal Center (RPC)
- Stabilization
 - Avoid hypoglycemia and hyperthermia
 - Identification and treatment of seizures
 - Arrange for transport
 - Passive cooling
 - Initiated by turning off radiant warmer/isolette
 - Time to reach target temperature: ~2 hours

Cooling Before and During Transport Advantages

- Most cooled babies are outborn
- Ensures initiation of cooling within the therapeutic window
- Avoids hyperthermia
Cooling Before and During Transport Disadvantages

- No data on beneficial effects
- Risk of cooling ineligible candidates
- Risk of over or under cooling
- Vermont Oxford Encephalopathic Registry
 - Third of infants are born at other facilities and not admitted to referring center until after 6 hours of age
 - Study

Prognoses

Mortality/Morbidity

- Reduction of death or major neurodevelopmental disability to 18 months of age:
 - 25% overall
 - 32% for moderate encephalopathy
 - 18% for severe encephalopathy
- Death or severe disability at 18 months of age significantly reduced!!

http://pediatrics.aappublications.org/content/133/6/1146.full
Cooling Studies In Progress

- Therapeutic hypothermia beyond 6 hours
 - Infants 6-24 hours of age
- Late preterm infants: 34-36 weeks gestation
- Lower cooling temperatures: 32°C
- Longer cooling time: 120 hours

http://pediatrics.aappublications.org/content/133/6/1146.full

Pharmacologic Management As An Adjunct To Hypothermia

- Neuroprotective Agents
- Inhaled Xenon Gas
 - Phase I and II study
- Erythropoietin
 - Phase II study
 - Doses of 1000 U/kg IV
- Darbepoetin
 - Phase I and II study in progress
- Clonidine
 - Phase I and II study
 - Improve sedation, shivering and agitation

http://pediatrics.aappublications.org/content/133/6/1146.full
Case Study

Infant was a 3693 grams, 40 4/7wk white female infant born to a G3P1012. Delivery was complicated by maternal cardio-respiratory arrest. Infant delivered by vacuumed as mother received chest compressions. Mother required epinephrine after infant delivered. Infant required PPV and intubation in delivery room. APGARS 1/5/5 Cord gas (arterial) Ph: 6.92, HCO3: 22, base deficit: 13.7. Infant transferred to NICU on IMV. Upon arrival to NICU, infant with some spontaneous movement and breathing. Infant placed on ventilator and cooling blanket. First ABG in NICU was 7.30/27/97/13.3/-12.2. Admission exam: infant with decreased activity and hypotonic tone but responds to exam. Hand held fisted. Weak suck, moro present but decreased. No seizure activity noted.

Infant extubated shortly after admission to the NICU. UAC was placed. Admission HUS was normal. Cooling per protocol. Core temperature maintained at 33.5°C for 72 hours and then rewarmed at 0.5°C/hr over 6 hours. No complications noted during the cooling process. Repeat HUS completed on 6/4/15 and was normal. Feedings were started on 6/5/15 and infant advanced to full feedings with all nipple feedings on 6/8/15. MRI completed on 6/5/15 and showed no evidence of ischemic injury.

Infant was discharged home with parents on 6/10/15. Home health PT and baby net referrals made. Infant to be seen in the NICU f/u clinic in 6 months.
Conclusion

- HIE is a major cause of infant morbidity and mortality
- Therapeutic hypothermia is the only known therapy for reducing morbidity and mortality
- The AAP established criteria for hypothermic cooling from clinical trials

Questions?

- Post your questions in the box...
- Lines now open
 - Please make sure your phone is not muted so we can hear your questions!
Thank you!

- You will receive an email following the webinar with an evaluation, please complete the evaluation and your CE certificate will be sent electronically.

- Please contact me for any further questions.
 - 803.434.2913
 - Cathy.White@PalmettoHealth.org